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Abstract

Simple shearing deformations are analyzed as a means of in-
vestigating the effects of strain hardening, thermal softening, and
strain-rate sensitivity on the formation of shear bands. Linear
stability analysis is conducted for perturbations from homogeneous,
time varying deformations. Finite difference solutions are obtained
for the fully nonlinear system of governing equations. Velocity
boundary conditions are emphasized although solutions for the case
of stress conditions are also presented. Three types of constitu-
tive models are considered: the power law model, the Arrhenius
law, and the Bodner-Merzer model. Inertia and heat conduction
are included. Qualitative features of plastic response for the
class of problems considered are illustrated by eighteen numerical
solutions. General conclusions on the critical conditions for the
stability of the solutions are difficult to draw in view of the many
features of the problem that influence the formation of shear
bands. Low strain hardening, high thermal softening, and weak
strain-rate sensitivity all contribute to shear strain localization.
The size of an initial perturbation is important in the stability
of solutions for the case of velocity boundary conditions, but it
is less important for stress boundary conditions because of the in~

herent inhomogeneity of dynamic solutions in the latter case.
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I. INTRODUCTION

Localization of plastic deformation in the form of shear bands

is observed frequently during tensile, compressive and shearing defor-

AR
S

mation tests. Shear bands occur in a wide range of applications such

4

as ballistic impact, dynamic fracture, cryogenic behavior of materials,

i: high velocity forming, machining and grinding.

.'.:

:j Current understanding of the phenomenon is not fully established;
.“'.

s

however a common view is that at high strain rates the occurence of shear

LA

bands is related to thermal softening features of material behavior. That

'y

3§ is, shear bands are thought to initiate under conditions of nearly

N . . . ; i

\\ adiabatic deformation when thermal softening overcomes strain-harden-
(J ing so that the rate of change of the flow stress becomes equal to

b

- —
A

zero [ 1]}. At this stage of deformation the flow stress decreases

as temperature increases, resulting in inhomogeneous deformation.
This inhomogeneous deformation results because the heat generated by

plastic working is greatest in regions of highest strain rate. This

leads to further softening of the material in these regions, and the
cycle is repeated until the deformation is localized in the form of
shear bands. The existence of material or geometric inhomogenieties
appears to be necessary for triggering this mechanism. The exact
nature and size of such inhomogeneities are not fully understood;

however, it is believed that these defects play a major role in shear

o

H band formation.

j Early observations and discussions of shear bands are attributed
Y

2
@ to Zener and Holloman [2], who observed a white etching band

1

[ ]

in an 0.25 C, low alloy steel subjected to a rapid punching test.

They showed that a local temperature of 1000°%¢C is reached with a total

Yo AR ENESIR NN L AN
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£§ shear strain of (5.0). A large number of similar experiments are cited
B in a survey by Rogers [3]. Strain rate sensitive materials are viewed
E% as being less sensitive to localization [4]. Some metals show verv
*g stable behavior in their superplastic ranges where they are well
v characterized as nearly Newtonian fluids. Rate independent models of
?i pPlastic response, without thermal softening, exhibit shear strain
;s localization when the effects of geometric softening due to lattice
: rotations and/or non-normality of the plastic strain-rate to the
‘J yield surface are included. These effects have been presented fully
:§ in a recent review by Asaro [5].
ol
Experimental investigations of shear bands often are concerned
-3 with metallurgical effects on the onset of localization [6], and with
fé measuring the strain, strain-rate and temperature at which bands are
‘ formed [7],[12]. Analytical discussions of shear bands seek, for
i assumed constitutive models, the critical conditions which character-
'% ize the instabilities reported experimentally. Most of the assumed
S
H constitutive models are based on a macroscopic point of view due to
E‘ the associated complexity of plastic deformation at the microscopic
> level. Moreover, the pre-localization constitutive equations are
assumed to hold when localization occurs. Several authors attempted
i to obtain a simple stability criterion for adiabatic plastic deforma-
>
é tion by means of a linear perturbation analysis [8], [9], [10], [11].
i‘ However, the use of constant coefficients, evaluated from the homo-
:i geneous solution at the time the perturbation occurred, imposes a
'5 severe restriction on the validity of such results. In other analyses,
: computer simulations have been presented for the fully non-linear
system [12], f13].
7,
%
’

E 'y

NI N "a"..;".' >y -’.;..‘:'.' \.('.'.‘:'. R -.t.-‘. . . -.._A'.‘ . .‘:'. q,..-:-..-.‘;.- SN ‘.:‘.' ~'."‘_ :_..._.:. _..:‘
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This work presents a general analysis of shear-strain local-
ization in simple shearing deformations of thermal-visco/plastic
materials. The system of governing equations for a one-dimensional
simple-shearing deformation is formulated in Chapter II. An exact
solution for quasi-static deformation with no heat conduction is pre-
sented in Chapter III for materials with temperature-dependent
viscosity and no strain-hardening. In Chapter IV a linear stability
analysis is presented in which the time-dependence of the coefficients
in the linearized equations is retained. A stability criterion moti-
vated by a bifurcation type of instability is also presented.

In Chapter V, a numerical simulation of the fully nonlinear
system of equations is presented for a number of constitutive
equations. These constitutive equations exhibit strain-rate
sensitivity, strain-hardening (softening) and thermal softening

(hardening) that are representative of the response of metals. The
major objective underlying such numerical simulations is to study the

material response to small initial perturbations of the homogeneous

solution. This work serves as a means to obtain a better insight into

the phenomenon of shear-strain localization, and to reconsider some of

the common ideas concerning shear band formation.
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IX. PROBLEM FORMULATION

Consider a simple shearing deformation of an infinite plate at
constant strain rate. The plate has thickness H in the y-direction
as shown in Fig. II.1l. The lower edge (y = O) is fixed, while the
upper edge (y = H) has a velocity (v = vo) in the x-direction.
Assume that all physical quantities are uniform along the X and z
directions so that the deformation depends only on one space coordin-
ate. Under these conditions, the only non-zero displacement component

is in the x-direction, and the only non-vanishing stress components

areog_, 0. ., 0 , o ., The equations of momentum balance reduce to:
Xy xx' yy 2z

30

Xy _ v
3y = po 3t (II.1l.a)

90
YY = 0 (II.1.b)
dy

where oxy and oyy are the components of the Cauchy stress tensor, v
is the particle velocity in the x~-direction; and Py is the mass

density. Hereafter the shear stress oxy will be denoted by t. The

total strain is assumed to be composed of an elastic plus a visco-plastic

part, i.e.

y = v+ (11.2)

where the elastic part of this decomposition is given by

e

v = (II.3)

X
G
in which G is the elastic shear modulus. Differentiating (II.2) and

(II.3) w.r.t. time and replacing the total strain rate by the velocity

gradient one obtains

AT
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3y G ot at (1I.4)
;E The heat Q generated by plastic deformation is assumed to be }
o J
;2: related to the plastic work WX by

b
R P (II.5)
ot ot ot

where the factor B is taken to be approximately 0.9. Heat transfer

in the material is assumed to satisfy Fourier's law of heat conduction
h =-%kx —T— (II.6) 1

where hy is the heat flux in the y~direction, k is the thermal
conductivity and € is the temperature. From (II.5) and (II1.6) the

energy balance equation can be written as

== = k 978 + BT - (I1.7)

where ¢ is the specific heat per unit mass.

The remaining equation is the constitutive equation that
characterizes the material response to the given loading. We consider
materials which exhibit strain-rate sensitivity, strain hardening,
and thermal softening or hardening. Thus, in simple shear the flow

stress is assumed to be given by a relation of the form

.p_oyF
To= oy 8,4, VD) (vP=zl) (11.8)

The governing system of equations used for modelling the

features of shear strain localization in thermal visco-plastic materials

can be summarized as follows:
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p v _ 3t (1I.9)

0 Jt y
o | w1 o (11.10)
at oy G at -
2 p

26 Kk 3°8 8 3y

= = + T (11.11)

at poc 3y2 p.C at

T o= e, vF, YD) (II.12)
or

YYo= etr, ¥, 6) . (II.12a)

The complete initial-boundary value problem is defined once initial
and boundary conditions are prescribed. These conditions will be

given when numerical solutions are discussed (chapter v).

Dimensionless Form

It is useful to rewrite the system of governing equations (II.9,

12) in a dimensionless form. The dimensional quantities in the

system (I1.9,12) will be relabeled by a superposed * , and then the
unlabeled quantities will denote the corresponding dimensionless

|
quantities.

The dimensionless quantities are defined by

c A A
t = = , y=y/H, 1=1/1 '
o]
t
o ~ ~ La) A A
N N k 90 to £0
v = v/(H/t) , k= —=< , E= =2
o H2 fo
o
P ‘p,i P E’on E:éo{:oz
Y = Yp/?o ’ pO= .~ 2 ’ c = 2
T t H
o o
1 To é o s°
c - = b= = S =
G QD Yo

..

SR SRS
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. v = Vv T = T 06

1' /Yy v A

: where the subscript "o" refers to quantities evaluated for the

'; homogeneous solution at the time a perturbation is introduced, while
the superscript "o" refers to evaluation for the homogeneous solution.

: The characteristic time Eo = l/§°p is the time required to obtain a

. ~

: unit shear strain at the strain rate Yop . The coefficients Vv,S and

\
T are defined by

A

3¢ ]

: vV = %% ’ S = p ¢ T = %

: o

ﬂ
They are measures, respectively, of the strain rate sensitivity,

4

.j strain hardening (S < 0), and thermal softening (or hardening).

4

3 The dimensionless quantities defined earlier are chosen such tlhat
once introduced in the system of governing equations (II.9.12) , the

) resulting system will be exactly the same except that all quantities

) are dimensionless. The dimensionless form will be used in the remain-
der of this work.

1.

b ]
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III. ANALYTICAL SOLUTION FOR A SPECIAL CASE

Analytical solutions for the nonlinear system (II.9-II1.12) are
difficult to obtain due to nonlinearities associated with the
constitutive equation (II.1l2). Examples of the nonlinear constitutive

equation are the empirical relation,

P
- vV , p,m, 3y .n
T uo 6 (v7) ( 3t ) (II1.1)

where uo,v, m, n are material parameters. and the Arrhenius law

*
W
$ = w, exp { -[TB(YP) -:IKbe } (111.2)

where(nois the frequency of vibration of dislocations as they attempt
to overcome obstacles, TB(yp) is the stress barrier amplitude - which

is a function of the plastic strain in case of a strain hardening

*
material; W is the Activation volume; Kb is Boltzmann's Constant.

For physically reasonable models these quantities satisfy,

p

w°>> 1, T < TB( Y ) .,

*
P W
TB(Y ) Kbe >> 1 . (III.3)

The function rB(yp) is assumed to be positive, monotonic and to have
. s - «© . . .

a saturation limit Ty as YP + » ; furthermore, its derivatives are

assumed to vanish as Yp > o

In order to be able to obtain an exact solution that exhibits

some features of the solutions of (I1.9-II.12), consider the following

special case:

A AN S RARARANS A R AAA L S L Ak 8 LR Al Bl GL UL Al L Sl Sl Rl A '-.'-‘.‘-‘.‘..:-.:L.T“T
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R * quasi-static deformation, i.e. Py %% = 0
* no heat conduction, i.e. k = O
~
!\..:
'a; - no elastic effects, i.e, G + =
-
" - constant shear stress boundary conditions, i.e.
T(0,t) = 1(H, t) = T
Ayt
.
h: - Non-Newtonian fluid with temperature dependent viscosity, i.e.
v,9
T = p (D 5 n>o (III.4)
o oy
=
f: The effects of thermal - softening (hardening) are obtained for
o negative (positive) values of the power v. Although this model
does not represent solids of engineering interest, it is attractive
3& because it allows an analytical solution that gives insight into
instabilities of solutions of the system (II.9-II.12) as well as
providing a reference for checking the validity of the solutions
J‘-
e . . . . L. .
oy obtained by a linear perturbation technique and by a finite difference
method. Under these assumptions the system of equations (II.9-II.12)
) reduces to
..
"-l
-
3T
T _ o III.5
3y ( )
« p
Yy ov
L4
- —_— = — .
%3 oY 3y (I11.6)
~
30 v
_ = r. T — III.
3t 1 3y (I11.7)
}{ VvV dv.n
- 1 = u (B () (111.8)
. o dy

where rl = e/poc. From (II1.5) and the stress boundary conditions

< the shear stress is given by

359 5 S S A WY Y T S R LA R
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T(y,t) =7 (III.9)

which is kept constant throughout the deformation. Eliminating

(%5) between equations (III.7) and (III1.8) one obtains

-~

-V
98 = nbd (III.10)
ot
1l
T. =
_ l.n . s ~ v .
where n = rlTl(i—é is a positive constant and v = o Integration of
(o)
equation (III.1l0) gives
1
- +V
oly,t) = {£(y,t,5)} " (III.11)
-~ v+l ~
where f(y,t,v) = eo(y) + n{vFrl)t. (III.12)

This expression for the temperature 6(y,t) can be used to obtain

the following expressions for other quantities of physical interest

-:% (y,t) = n { £y, t,v) } ¢ ) (III.13)
- de _(y) (V)
8 - Vo, e . { .
3y (y,t) [%o(y) dy ] \ f(Y,t,v)} (III.14)
1
. T\ N ~ 1o (V)
Yp(y,t) = (;—) . { fly,t,Vv) } (II1.15)
(o]
where
d(v) = Y (III.16)
S :

Analysis of the exact solution:

The functions f(y,t,G) and ¢(G) characterize all the features
of the solution to the problem. The function ¢(G) is negative for
V>0 and v < -1, while it has positive values for -1 < v < O.

The function f(y,t,J) is always positive for v > -1. For v<-1 there
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is a critical time .
+1
(6 (y)
tcr = B (III.17)
n|(v+1)|

at which f becomes zero; f is negative for t > tcr' Three types of
behavior can be distinguicshed.

(i) Thermal hardening for v > O

For v > O, ¢(v) is negative and f(y,t,v) is positive. Then, from

p
A 90 Y 96 .
(III.13-IIX.15) the quantities 5% ' 3E ! and 5y vanish as

t > » ., Such solutions are strongly stable.

(ii) Thermal softening for -1 < v < O

For v in this range both ¢ (V) and f(y,t,G) are positive.

p
o a9 oy 96 > o
The quantities 3 ' 8t ! 5; become unbounded as t .

The solution grows in time as shown in Fig. (III.2 for the plastic
strain rate. The shape of the plastic strain rate distribution
varies slowly with time at small times and becomes independent of
time as t > ». There is no tendency for localization of shear
straining. Based on the uniformity of the strain distribution;

solutions such as those shown in Fig. (III.2) are said to "grow"

rather than to become unstable. The term "instability" is reserved
for bifuration phenomena in which the homogeneous and perturbed
solutions grow at different rates so that differences between these
solutions become large at late times as shown in Fig. (III.3).

This notion of instability corresponds to experimental observations
of shear bands with localized deformations which are large relative

to deformations in neighboring regions.
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(iii) Thermal softening for v < -1

In this regime ¢(6) is negative; f(y,t,Q) is positive for
t < tcr and becomes negative for t > tcr' All guantities in (III.11)
and (IIT.13-III.15) become unbounded as t -~ tcr' Solutions exhibiting
such behavior are termed unstable, although both the homogeneous and
perturbed solutions become unbounded at the same time.

Concluding Remarks on Exact Solutions

1. The exact solution shows the possibility of a type of
instability in which the solution becomes infinite in a finite
time.

2. Less thermal softening is required to obtain unstable

behavior for weakly strain-rate sensitive materials (i.e. n << 1)

since Condition (iii) is v < -n.
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IV. LINEAR STABILITY ANALYSES

In view of the extreme difficulty of solving the non-linear
problem it is of interest to conduct stability analyses on a linear-
ized version of the problem. Several authors have discussed this
approach [ 9], [11]; however, for most of this discussion the homo-
geneous solution which is to be perturbed is held constant at the
values corresponding to the instant at which the perturbation is
introduced. This assumption, which is made to obtain linear equations
with constant coefficients severely limits the applicability of the
analyses. Extensions of the analysis to cases of time - varying
coefficients have been presented by Clifton [14] and by T. J. Burns
[12], who employed the direct Lyapunov's method for a thermo-viscous
material. (i.e. elasticity and strain hardening are neglected)

In this study we seek a rigorous linear stability analysis to the
general problem defined by Egs. (II.9-II.12). Then, we present a modified

stability criterion that extends the validity of the linear approach.

Iv.l. Linearized system of equations

We consider the linearization of equations (II. 9-12) about

the homogeneous (parallel flow) solution. We seek solutions of the

form:
Ty, t) = 1qt) + St(y,t)
viy,t) = vl(y,t) + &v(y,t)
Y, 00 =%+ &Py, (v-1)
Bly,t) = 6°(t) + &86(y,t)

where 81, &v, Gyp, 86 are the differences between the solution T, v,

yp, 8, that includes the effects of a perturbation, and the
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fe)
. o o o . .
homogeneous solution 1 , v , Yp , © . The homogeneous solution is

assumed to be perturbed at (t = 0) by a small periodic fluctuation
in the y-direction. We substitute solutions (IV.l) into the non-
linear system (II. 9-12), and retain only first order terms in

§t, Sv, Syp, 80. In this way we obtain the following linear system

of partial differential equations in &1, §v, dyp, and 69.

9 1 3 .
3t (6v) = 5 Sy (81) (Iv-2)
[0]

9 9 1 P

= (8YF) = sy O = 5 3p (60 (IV-3)

9 82 o 9 o)

3t (§9) = r, ;;5 (69) + vy (GYP) + r $ ST (IV-4)

—aa? vPy = vt + 1% + s° &F (1V-5)
k

where w0 c "

o]

. .. o o ,
In these equations the coefficients V, T, So are defined by

<
L]

0
] is a measure of strain-rate sensitivity;

3¢
aT
3¢

0
. ) o
] is a measure of thermal softening (T > 0),

Q
D

, o
or hardening (T < O) - thermal softening is

the usual case for crystalline solids;

0
o 3¢ . . , .
S = [——5] is a measure of strain-hardening, (or softening
Y
if negative).
. o o o .
The functions V', T and S are evaluated at the homogeneous solution
at time t; hence, these are time dependent coefficients. For convenience

of notation, we suppress the "8" in the following analysis (e.g. 6t > 7).

We rewrite equations (IV.2,5) in matrix form for a solution vector
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v
0 T (IV.6)
v 6

yP

The resulting system of equations has the form
L(w) = Aw + A w, +A w, t+A W, =9 (IvV.7)

where a comma denotes differentiation with respect to the following

subscripted variable and the coefficient matrices are given by:

- - .
ro ) o 0 e, 0 0 0
o v° ° s® ! R é— o o
A= =
0 -r, (t%%+6%) -r t°1° -r_19° o o 1 o
1 1 1
0 -v° = -s® | o ¢ o0 1}
- - p
(IV.8)
[0 -1 o o o o o o ]
-1 o o0 o o o o o
a¥ = AYY
0o o o o o o - o
o o o o o o0 0 o

The coefficient matrix A, is time-dependent, but it does not depend

on the spatial coordinate vy.

We introduce the Fourier transform defined Ly

I
ﬁ(g,t) = 1 J e 1EY F(y,t) dy . (Iv.9.a)
/2 -
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1 + @ £
F(y,t) = f ™Y F(g,t) at . (IV.9.b)
Fi -
Then taking the Fourier transform of L(w) = O we obtain
4" N
3 .
3% (g,t) = C(g,t) f::(é},t) (Iv.10)
or, suppressing the dependence on §,
dy
— = X Iv.11
Ty (t) c(t) g(t) ( )
where C(t) is given by:
(0] -3 (0]
1£/oo o
. o o) o
C(t)= ‘1£G -GV -GT -GS (IV.lZ)
0.0 ,0 o_oO 2 0_0
0 rl(T V +¢ ) Xt T rOE rT S
o v° T° s°

Equation (IV.1l) represent a system of linear, first order ordinary

differential equations for the perturbation vector %(E.t).

IV.2) Solution of the Linear System:

Analytic solution of the system (IV.1l1l) can be obtained in an

iterative way as follows:

t
w(t) = w(0) + I [C(n) & 1 dn
n N o "
- t n . \
= w(0) + f {C(n) [ a(0) + I (C(x)w] dx]} dn
n o N o N

Continuing the iteration process, we reach the solution:

B(t) = S(t) () (IV.13)
"
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where, the matrix S(t) is known as the matrizant of the differential

equation, or the "solution operator", which is given explicitly by

t t n
s(t) = I +fC(n) dn + J C(n)J C(x)dx dn + ... (IV.14)
o] o [o]

Or, in compact form,

sit) = & c)'™ (IV.15)
n=o
where
(n) t (n-1)
C(t) = J cm) cim™" an (IV.16)
O

and

ciw)® - 1. (IV.17)

The solution expressed by (IV.14,17) is the general solution of
equation (IV.1ll); however in the special case where C(t) commutes
with C(t)(l) the solution operator S(t) can be expressed concisely

in the form

t
S(t) = exp [ [ C(n) an ] (Iv.18)
o

(see Appendix I).




IV.3. Stability of the Solution

Consider the solution in the general form (IV.14) which repre-

sents an infinite series. Taking the norm of each side, one obtains:

syl =l Tew™ < T [ew ™
n=0 ~ n=0
}
However,
(n) t (n-1)
lew ™| = |1j e cm ™ Dan|
0

and for finite time intervals (0,t), we can write

t t
ey ™| < j et cm PP an < j Hem | Hlem @7 [an
0 0

Then

n=1 0

oo t
[Iscr|| s1+ 7§ { f Hemy ] 1lem @ |an } . (Iv.19)

Let us assume that sup]IC(n)|I exists and is equal to a finite
value p, say. In this case we obtain:
Pt

2.2
I[stey|] <1+ pt + RE%— + ... =¢e

or

[[ser|] < e[SUPHC(”)IHt; ¥n € [0,t] (IV.20)




From (IV.20) we conclude that the series S(t) is uniformly and
absolutely convergent for all values of t as long as the maximum
(supremum) norm of the coefficient matrix cC(t) is bounded for any

finite time.

IV.4. Stability criterion for thermal-visco-plastic deformation

The solution (IV.13) gives a direct relation between the vector

y
I I 4

-

-
- .
.

of initial perturbations and their corresponding values at a later

e
¥ )
A

7

3 1]
2

time (t > 0). The argument usually used to determine the stability of

~l

0

3
[)

such solutions is based on the signs of eigenvalues of the solution

operator S(t). Such a criterion serves to determine whether the

il
Ly
i . o . .
W initial disturbances grow (or decay) with increasing time. However, as
AN
"y
sj mentioned in Chapter III, we seek a bifurcation process for which the

perturbed solution grows much faster than the homogeneous solution.

-
[PRarS

vy v _
PR
.l

'l“‘l['ll

q"&}

Also, we require the unstable growth to be confined to some region of

the slab thickness. Motivated by this notion of instability, and in

~
'y

order to distinquish between a uniform growth Fig. (III.2) and an un-

v
I

;:; stable deformation Fig. (III1.3), we suggest the following criterion.
N
e
?J:- The system of equations (IV,7) is called "well-posed" and its
oo solution given by (IV.13) is called stable if there exist constants
» \‘:' ~
Fg{ K and a, both positive, and independent of initial values w(0) such
o
o that:

=
lt,
.

]

suplls(t)ll < Kk exp(at), (Iv.21)
The quantity sup||S(t)|| in (IV.21)is the norm IIS(t)IIm defined in

*
(Iv.23).

*
L If (Iv.21) holds for ||s(t)]], ,
R

defined by ||s(t)[], = max.
0
0 =l 1,

then it also holds for the Lz—norm
[Isterxl |,
for each t.
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The notion of well-posedness (IV.21) implies continuous dependence
on the initial data. Moreover, this estimate (IV.21) implies that a stable
solution can grow exponentially as long as it can be bounded by a suitable
choice of (k,a) for any finite time (t) and finite wave number (£). The
inequality (IV.21) suggests much weaker conditions for stability than the

requirement that all the eigenvalues Aj; of S(t) satisfy A, < O. An essential
y Ay 2

feature of the notion of instability adopted here is the requirement that

there are solutions that become unbounded in a finite time.

In order to apply the criterion (IV.21) we note from (IV.20) that

(IV.21) is satisfied if there exists an a« > 0 such that

sup ||lctm)]]| < . (Iv.22)
n€(o,tl -

That is, the criterion (IV.21) is satisfied if the norm of C(t) is
bounded for any finite time. To express this constraint in terms of

the elements of C(t) we choose sup ||C(n)|| to be defined
n€fo,t]

as follows:

n
sup |lcm|] = |lcwr]|| = max § |c (Iv.23)

n€o,t] l<ien §=1 13

Applying (IV.23) to the coefficient matrix C(t) given by (IV.12), we

find

max(Rl,R ,R4) = sup ||c]]

3 n€Efo,t]
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v

where the row sums are

R 2 [6l[1v®] « [s°] + |7°]) + log]

- 2
Ry = x| + 0%+ [1%°]] + Jr n0n%or 27
R, = V| + |s°| + |1°|

. . 0 . . .
Since for constant strain rates ¢ the time dependence in the expressions

for the row sums is restricted to the functions TO,SO,Vo and TO,

we can write the stability criterion (IV.22) in the form
{]t ] + [P | + v | } <a (IV.24a)

[<®m) | « { |m™°m]| + [s°my ] + [vom ] } < 8 (IV.24b)
provided that
() > Ty . \Ynefo, t] , (t<® ,a>0, B >0,
where the restriction on To(n) is imposed because the shear stress must
be greater than some yield value, say Ty' for constitutive equations of
the form (II.12) to apply.
The stability criteria (IV.24) have been derived for the case of finite

wave numbers £. This restriction can be removed by considering directlv

the rate of growth of the L2-norm of the solution w of the system
Y

{1v.7). (See ippendix IV)

IV.5. APPLICATIONS OF THE STABILITY CRITERION

IV.5.1. The quasi-static model (III.5-I1I.8)

The analytical solution for this model is given in Chapter (III).

For the constitutive law (I1I.8)

0 T, 1/n
= -0« 0%
uO

- (V+1)

0 _ 3¢
T =3
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Substituting the values of TO,T ,So and Vo in the inequality (IV.24)

we obtain
(%)- lvlrleo(t)'("+1) + %)™ < a. (IV.25)
where 1
- Hon
a = B(q) .

Substituting the homogeneous solution

1

0%ty = [1 + nv+) 1ot

into (IV.25) gives the stability requirement

1 < $ (V)

(3) + { £(t;9) 1
n

+ v e T < a (IV.26)

where

£(t;V) = 1 + n(v+l)t.

Obviously, the inequality (IV.26) is only violated for Vv < -1. 1In

this case the function f becomes zero at a critical time

- 1

t:cr = m . (IV.27)

Therefore, we conclude that the deformation described by this model is
stable for v > -1. This is the same conclusion obtained from the
exact solution (III.1l1-III.16). Furthermore, the linear stability
analysis predicts the same type of singularity as that obtained for the
exact solution, as well as the same critical time. Thus, the criterion
(IV.21) appears to have promise for characterizing the stability of

homogeneous deformations.

CcELELEOTLE

. v -




IV.5.2. General polynomial constitutive law with

velocity boundary conditions

We consider the general system of equations (II.9~-II.12) with the

constitutive equation (III.l) written in the form

¢=

T -V -
R e B
0

(Iv.28)

A homogeneous solution for this model (neglecting elasticity) has

been given by Clifton, et

al [14]. The temperature and stress in this

solution, obtained for a constant strain rate ¢0, are

1
%(t) = {yE(vm £ T etl)“’}l'_" (1v.29)
Lo = 5ee )V (IV.30)
where,
y = r1“o¢o(l+m+n) > 0
f(v,m) = -i—:%
T u0¢8+m > 0,

For the constitutive

are

equation (Iv.28)

¢
Q 0 ,v
T = ~ a (-60

.. 0.0
the coefficients TO,S Y

(1Iv.3la)




INCR P P

Xon

R ¢
. = - 22y (IV.31b)
n ¢ t
0
[V}
o o % 1
v o= — (=) (IV.3lc)
) n 0
| T
-

From (IV.29-1IV.31) the stability criterion (IV.24) becomes

“
s

s v 1': -‘.'.- -‘
&

<.
f‘é: % u ovml, — .0 v-1m
~ = {1 +|m|7¢— (67) 't “+fv|u(e)” "t} <8 (IV.32)
T O =
fg From (IV.32) the stability criterion is satisfied as long as neither
Y
pg of the functions (Go)v, (60)\)_1 becomes unbounded. Such singularities
« 4
0 ~
N can occur only for £(v,m) < 0 and at
1-v 1/14+m
tcr =\— (Iv.33)
v £v,m |

Stability boundaries based on the sign of £(v,m) are shown in

Fig. (Iv.1l).
The function f(\nm) is negative in regions (I) and (III) defined
by
I: v>1 and m> -1

III: v <1 and m < -1

Regions I and IV are of little interest in applications since materials
are generally thermally soft. Region III is seldom, if ever,
applicable because few materials exhibit the strong strain softening
that is characteric of this region. Region II is characteristic of
most metals. Thus, it appears that the stability criterion is satis-~
fied for most metals that could be modeled by (Iv.28). In view of the

fact that Region II contains points corresponding to both strain
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softening (m < 0) and thermal softening (v < 0), it appears that

stability in the sense of (IV.21) is satisfied for a wide class of

materials.

Consider the term in { } in ecuation (IV.32); and denote it p(t),

then equation (IV.32) becomes
=) P(t) < a
n =

If P(t) is bounded, say by P
Bt

max s then the solution to the perturbed

problem grows no faster than e with B = ¢o pmax.

n
solution to the perturbed problem grows or decays depends on the thermal

. Whether such a

softening and strain hardening parameters, v and m, respectively. 1In
either case, the rate of growth or decay is affected by the strain-rate
sensitivity parameter (n). Small values of n (i.e. weak strain-rate
sensitivity) allow high rates of growth or decay.

If P(t) is unbounded, then the problem (IV.1ll) is not well-posed.

IV.5.3 Bodner-Merzer Constitutive Model

Consider the system of equations (II.9-II.12) with the constitu-

tive model (introduced by Bodner and used by Merzer [13]):

T, (W)
t =1, 8, ) = = [£(n)]

3

c(® (IV.34)

where

LRt e . Tt e e CIRTRCIN
PRI Y AL AL VAL TRE TR, P R, A

E W,

g



Neglect elastic strain rates in (II.10) and combine (I1.9) and (II.10)

to obtain
o]
3¢ 3¢
- = IV.35
po at 2 ¢ )
oy

~

where ¢ is the plastic strain rate, as in (II.1l2a). Substitution of

(IV.34) in (IV.35) gives

29 P
= = (s +5S_ 8 + S_W )
Po ot = 1 Pyy T 52 Yy TS Ly
3s 3s 39S (1V.36)
=2 o+ =20 +2WP )
By 'Y )% 'Y Y 'Y
where the coefficients Si are for the model IV-34, given by
s. = 2L = </[n¢ » £ ] (IV.37a)
1 P
ay
8, = 3—; = - at + gn[£(n)]/(26°n°) (IV.37b)
T
S3Eﬁ-=mr(;i-l). (IV.37¢c)
awP 1

Equations (II.1ll) and (IV.36) constitute the governing equations for
the evolution of the temperature 6 and the plastic strain rate ¢ = ?p

I’

T in these equations is obtained from (IV.34) and wP is obtained from

N

)

the integration of the second part of (II.5).

S, = 8,(t)
1 1

and for i=1, 2, 3 (IV. 38)

Moreover, if we confine attention to the late time response; then we

can set

S3(t + ®) =0 (IvV.39)

For a homogencous deformation the coefficients Si are y-independent,

R
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N Based on these assumptions the governing equations reduce to

P 3¢ =S ¢ +S. 8 (Iv.40.a)

30 ~
—_— = + . N .
e ro e:YY r T(0,¢) ¢ (Iv.40.b)
where .
~ T1 c(8)
T(6,9) = — [£(n)] . (IV.40.c)
/3
Introduction of the solution vector
z = { ¢} (IV.41)
~ 6
allows equations (IV.40.a,b) to be written in the form
=a® 5 a0, (IV.42)
"'rt “pYY -
. . . (2) (o) .
where the coefficient matrices A and A are given by
(2) %0 %% (0) ° °
A = ’ A = (IV-43)
0 r0 rlr 0

Taking the Fourier transform (cf. (IV.9)) of equation (IV.42) one

obtains . R
Z = c(t) 2 (IV.44)
~’t -~
where
2 2
-85 &S,
o po
c(t) = . (Iv.44.a)
~ 2
rlr - r,
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For the stability criterion (IV.22), stability requirements for the

considered model can be given by

2
—ff; (sy| +Is,h < o a >0 (IV.45.a)
(rt + €% ) <8  8>0 (IV.45.Db)

The inequality (IV.45.b) is always satisfied; however the inequality

(1v.45.a) is violated as soon as either

VS 20, ie.n+1 (IV.46.3a)
or
o -+ l—a—l , i.e. n(8) ~ 0 (IV.46.b)
b

The second limit is reached for all homogeneous deformations without

heat loss, if these deformations are carried to sufficiently large

strains. Thus, the material model characterized by (IV.34) is
especially sensitive to temperature increases. For the numerical
values given in [13] for a and b the limit (IV.46.b) is reached at a
temperature 8 = 1.72; for adiabatic deformation from room temperature
this temperature is reached at a strain of approximately 200%. This

limitation on homogeneous deformations for the model (IV.34) will

be discussed further in chapter (V).




V. FINITE-DIFFERENCE SOLUTION OF THE NONLINEAR PROBLEM

,,-...<
. D
U A
. . S

Kﬁ In order to obtain a better understanding of the onset of locali-
Wy

E:‘(' zation in simple shear deformation, we seek a finite-difference

R}

f)

numerical solution to the system (II.9,12) for the general form of the

constitutive equation (II.12). Numerical solutions of this problem

i

have been presented to interpret torsional Kolsky bar experiments

OV B

2 3
P

[13], [15]. An important feature of these solutions is the intro-

duction of a geometric imperfection in the specimen. The

numerical calculations by Costin [12] show evidence of localized
deformation in a low-carbon cold-rolled steel (CRS) at high strain
rates, and stable deformation for a hot-rolled steel (HRS) of the same
composition. These results are in agreement with experimental observa-
tions. Merzer [13] discusses the effect of thermal diffusion on band
spreading in Kolsky bar experiments. He shows that for a thermal,
visco-plastic model of an aluminum alloy the band does not spread
significantly at strain rates of 500 s—1 and higher.

The objective of the present study is to examine, through numerical
solutions, the response of different materials to different types of
initial perturbations in the field quantities, for wvarious combinations
of boundary and loading conditions. A number of constitutive equations
is considered in order to study the relative effects of strain-hardening

and thermal softening. We consider the following system of equations:

v _ l—-:—T v.1)
at Py By

P
g-z——= -g% (v.2)
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30 _ 379 3y
3T = %o ——5-+ v (v.3)
oy
P .P
T=90,y ,v). (vV.4)

Elastic effects are not considered in this model, in order to facilitate
the calculations; however, this approximation is not expected to affect
the results significantly since elastic strain rate is much smaller than
the plastic strain rate. Equation (V.3) has a quasi-linear term, while
equation (V.4) is, in general, fully nonlinear.

Before presenting the finite difference formulation, we point out
that we seek the qualitative behavior of the solution, which makes the
stability of the difference method our primary concern and the method's
accuracy of secondary importance. However, accuracy has to be kept
within reasonable limits to satisfy the consistency requirement. An
essential objective in this formulation is to be able to resolve the
time scale on which major changes in the solution occur. This makes an
explicit formulation preferable to an implicit one since small time
steps are required for good time resolution and the implicit schemes
have the associated difficulty of requiring the solution of a system
of simultaneous equations at each time step. Thus, the unconditional
stability feature of implicit schemes is less attractive for the type
of problems considered. Use of an explicit scheme requires the choice
of a "proper" time increment, where a "proper" time increment is the one
that maintains scheme stability and is large enough to give good
computational efficiency.

The difference formulation is presented for the system (V.1-4)

with the following auxiliary conditions.
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A. Initial Conditions

For a constant overall strain-rate, initial conditions for velocity,

_.. '_'.‘_':‘_'l

strain and strain-rate are:

-~ - w
U

0.

P .P
viy,0) =y, v (y,0) = Yor ¥V (v,0) = 1.

W
2

R

The initial condition for the temperature is assumed to be

»

6(y,0) =1 + GP(Y)

where ep(y) is a small perturbation. The perturbation is taken to be
either a smooth periodic fluctuation, or a step perturbation over a
narrow region near the center of the slab thickness.

The initial conditions on YP,?P and 6 are used to calculate
the initial stress t(y,0) from equation (V.4).

Alternatively, for quasi-static deformations with a geometric
imperfection, we take the thickness in the direction 2z to be a

function T(y). From equilibrium the shear stress must satisfy

Ty

T(y,0)T(y) = Const. (v.6)

The initial temperature is taken to be 6(y,0Q0) = 1. The corresponding

N 3 AL AU

. . P i . .
initial strain rate Y (y,0) and initial strain Yp(y,O) for which

.

s . es . , . . P
(V.4) is satisfied is obtained by assuming YP(y,O) and Y (y,0) to

L2
N

-

TRl

be proportional, i.e.

il
N N

P *P
Yy (y,0) = YOY (y,0).

.

Substituting this expression and (V.6) into (V.4), and requiring the
mean strain rate to be unity, we obtain the constant in (V.6) and the

initial strain rate distribution.

e " I IR TR TR I SR S | -
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B. Boundary Conditions

We can prescribe either velocities or stresses at the boundaries
y =0 and y = 1. For most of this analysis we assume velocity

boundary conditions of the form

L
(=}

v{o,t) =
. (v.7)
v(l,t) =

|
[

We assume that the deformation occurs without heat transfer from the

slab. This condition is ensured by the boundary conditions

36 _ 38 -
3y (0,t) = 3y (1,t) 0. (v.8)

V.l. PFinite difference formulation

Our basic formulation is concerned with the dynamic problem in
which inertial effects are retained. We confine our attention in this
part to the case of velocity boundary conditions.

The key idea in this analysis is to rewrite the system of
equations (V.1l,4) in a modified form that reflects its "parabolic"

nature. For this, differentiate (V.4) with respect to y to obtain

-P P
T 3y 90 3y
— = —— — ——— .
3y Sl 3y s2 3y + s3 5y (v.9)
where
]
Sl = —TF (V.1l0a)
3y
s = 2% (V.10b)

N
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and

S = — (V.lOC)

From the compatability relation (V.2), we get*

-P
oy 2 (v _3y, (V.11)

2
9y v
oy oy 9y 3y2

Substitution of (V.1l) and (V.9) in (V.1l) gives

2 P
ov _ 1 v 96 oY
—_—= —_+ - + —}. .
- —-{po s, o S, 5y * 53 3y (v.12)

This form of the momentum equation can be viewed as a parabolic equa-
tion for the velocity v(y,t) which is similar to the well known
diffusion equation

2%

=\ L
8x2

(V.13)

2l

but with variable coefficient Sl(y,t) and lower order terms. Sub-
stitution of the shear stress of (V.4) into (V.3) allows the governing
equations to be written as the following system of three evolutionary

equations.

2 P
v _ 1 v L) Yy
=g, X+ 5 45 14 (v.14)
ot po 1 ay2 2 dy 3 3y

P
3y _ v
5t " 3y (V.15)
2 P

@ _ 3%, o PR
3t ‘0 3y2 MRS ALTA RS R N vl (v.16)

*This step is the reason for not considering elastic effects.
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Introducing the solution vector

v
¥ (V.17)
0

we can write the system (V.14-V.16) as

.
(]
’

CARA

/
P

<'v
P
el
s % e
R )
o . ..

tE

-

w = Ayw + Ayyw (v.18)
~,t ~Y “aYY
where
0 s3/po sz/o0
a¥ = {1 0 0 (V.19)
rlw 0 0
0
$./°, 0
aYY = 0 0 0 . (v.20)
0 0 r,

We introduce the following terminology for finite difference

quantities

=2
"

= Ay ... spatial increment

~
n

At ... time increment

SO, T Ny SR S SRR, O e e
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X? = x(jh,nk) «+- Value of the variable x at
the jth node and the nth time
level (assuming that x(y,t)
coincides - at least locally -
n

with the described values xj

at the respective nodes).
We make use of the difference operators

D+(h) «+++ forward difference operator

D_(h) .... backward difference operator

Do(h) .... central difference operator

where
D (h)xx; = (xg‘ﬂ-x’j‘)/h (v.21)
D (h)xg = (x;'-x‘j‘_l)/h (v.22)
D (h)x;‘ = (x’J,‘+1-x" L)/2n (V.23)

The difference operator D+(h)D_(h) = D_(h)D+(h) represents the

symmetric second order difference operator, i.e.

n_ ,.n _ 2
D+(h)D__(h)xj = (xj+1 2xJ+x3 l)/h (V.24)

We will use the operators Do(h) and D+(h)D_(h) to approximate

first and second oxder spatial derivatives, respectively. Also,

D+(k) will be used to approximate the time derivatives.

We will solve the evolution equations (V.14,16) in the given order,
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using the updated values to modify the calculation. Therefore,
difference equations can be given, for interior nodal points, as

follows:

n 1 n n n n n P.n
D (k)v, = =— {s_.D (h)D (h)V., + §_.D (h)6., + S_.D (h b (v.25)
> + ] Py B3+ -3 20 Yoy 330 (M (Y )

g Pn _ n+l
N D, (k) (v )j Do(h)vj (v.26)

and

Y%

ART
e

A
-
r.e,

n _ n n _n+l -n+l n+l
D.'_(k)ej = rQD_._(h)D_‘(h)ej + rlIW(Oj,Yj Y5 )]Do(h)vj . (v.27)

‘l
-l

)
‘

] n+l
3T The shear stress Tj is evaluated from

&
']

Ao n+l
E T, = y{8,
i ] v s I

n+l P n+l n+l
(v )j ' [DO(h)vj 1}. (v.28)

o0 Spatial derivatives at the boundaries are approximated by a second
LA order discretization derived by the method of undetermined coefficients.

The results are

wey
A

L

A
dy

hAh]
.
[ I B N

LA

3
~ (-~ = +
( > fo 2f

- l-f )/h + O(hz) (v.29)
2 2
y=0

1

" »
.

-2 (H 3¢ - 1 2
o 1 oy = (£ - 2£ L+ £ )/h+ 0(°) (V.30)

. | _ 2
e 2 ~(g, - 2f + £)/0° + o) (v.31)

y=0

2
: -3 o (fN - ZfN—l + fN—Z)/h + 0(h) (v.32)
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Since the boundary conditions are prescribed for the velocity v(y.,t)
and the temperature 6(y,t), we do not need to use (V.31,32). There-

fore the order of accuracy of the scheme (V.25,30) becomes

€ = om>,k) i.e. 0(2,1). (V.33)

Consistency of the scheme with the original system (V.18) requires
that € 1is at least 0(1,1), therefore (V.33) implies consistency as

well,

V.2. Stability of the difference scheme

The notion of scheme stability we use is a modification of the
Von-Neumann stability criterion [18] discussed by Strang [20] which,

for the system (V.18), gives the stability requirement:

k. IMax eigenvalue of a¥Y| < L
n2 =2

From (V.20) this requirement is

S, (y,t)
(L)max{l ' kc}:i'

h? °0 )

In general, Sl(y,t) > k/c so that the limit on the time step is

poh2
—, v.
k < 2sl(y,t) (V.34)

The criterion (V.34) used to bound the time increment k is an
approximate one based on freezing the coefficient Sl(y,t) between
time levels. We evaluate the right hand side of the inequality at each

time level and set

D T A e T e
st L St o ST




’; n+l P h2/2
W kj = (0.97) *min = (v.35)
‘ .
i J (sl)j
.
~;" n+ 1
~ where kj is the time increment between levels (n) and (n+l).
e
A
oy
e
[
Dy " V.3. Formulation for stress boundary conditions
. The analysis of the case where stresses are prescribed at the
5
5 . . . ‘. . . . .
AN boundaries is simplified by rewriting the governing equations in a
2
%
5 form that allows the solution to be obtained following the same procedures
o used in the case of velocity boundary conditions. Differentiating the
-
:. constitutive equation (V.4) with respect to time, one obtains
N
~ 2P 3
% dt 3%y 36 3y
— = + —
« 3t - 51 2 TSt Sy (v.36)
ot
‘i where, Sl,s2 and S3 are defined by (V.10,a,b,c). From (V.1l) and
i' (V.2) we have
. 2P 2
% 9 L - DL ar L. (v.37)
v ot 0 dy
'Z
" Then, substitution of (V.3), (V.2), and (V.37) into (V.36) gives the
iQ following evolutionary equation for the flow stress
.
- 2 2
% S
% 3T 13T 376 v v
i S =2l l s (r, =+, T s & (v.38)
‘ ] 2 0 2 1 9
< t 0 3y 2 3y y 3 dy
3 Introducing the solution vector
.o T
i v
:; z = p (V.39)
" Y
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"
A g
-
»
.p

,"._'\--‘.-_..:‘_.-_...','.'__.‘\ e e e e e T e T e e T e T e L et e e N e

el ,\:_' RO P




A S e A £ SR SE DML A gt o p RS CACLIFA AR CRAL RS SLRATLE R A SR AR

we can write the governing equations in the form

Yy

= B'z + B*%z (V.40)
~,t ~:Y ~rYY
where
[~ +
0 r, TS, + S, 0 o']
1/e, 0 0 0
BY = (V.41)
0 1 ) 0
i 0 rlT 0 Od
and
sl/p0 0 0 r052
0 0 ) 0
¥ = . (v.42)
0 0 0 0
) 0 0 r
| 0

The numerical solution of equation (V.40) is obtained by an ex-
plicit finite difference scheme analogous to that described in the
previous section. The spatial derivatives are replaced by central
differences while time derivatives are replaced by forward differences.

The system of evolutionary equations is solved in the order of the

components of the vector.

The scheme stability is analogously determined by the requirement

vy X

2

% i (V.43)
h

Max eigenvalue of B
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Computational evidence show that scheme stability is ensured by using

. k = 0.97 (/—) (vV.44)
o 28
1
Q:%. which is the same step size used for the case of velocity boundary
\ ..".‘
conditions.
s.!:.."-
?:} V.4. Formulation for the case of geometric inhomogeneity
b~ .:\

We seek a finite-difference solution to the general nonlinear
system (II.9,12) for the case of a thin-walled tube with a groove in
it as shown in Fig. (V.1l). The tube is subjected to torsion which, for
sufficiently small values of the ratio of wall thickness to tube radius,
is a good approximation of simple shear.

Numerical simulation of this problem has been presented by
Litonski [15]1, Costin, et al, [12] and Merzer [13] for the case of
quasi-static deformation. They assumed homogeneous deformation con-
ditions in each uniform thickness section of the tube. Merzer [13]
included heat conduction.

A complete numerical solution for this problem is presented --
accounting for inertial effects, and without imposing the assumption
of deformation homogeneity in uniform thickness regions. The system of

governing equations is taken to be (V.1,4). Due to the geometric

discontinuity, modifications are required in the initial conditions.

In addition, boundary conditions are required at the surface of dis-
continuity. To obtain these conditions, consider a strip of width 2€
at the edge of the groove as shown in Fig. (vV.2).

Let '-' and '+' denote evaluations of the various quantities at

the left and right hand sides of the e§ge shown in Fig. (V.2).
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Figure (V.1l) - Longitudinal Cross-section in
the thin-walled tube with the groove (8§, S)
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Continuity of particle velocity, temperature, and shear force

(or torque) gives

v = v+ (V.45a)
0" =o' (V.45b)
- +

T = AT ; A <1 (V.45¢)

+ - . .
where A = A /A is the ratio of the cross-sectional areas.
Consideration of energy flux into the strip of width 2€, and

taking the limit as €->0 gives the additional relations

96,~ _ . 38+
Gy = M) - (v.45d)

Equations (V.45a-d) are the conditions that are to hold at the interface

y=YO'

V.4.a. Finite-difference solution

The symmetry of the problem allows us to consider only the solution
in the half y € [0,1/2). The initial conditions are chosen such that
the system of governing equations (V.1l-4) and the continuity require-
ments (V.45) are met. Plastic strain and temperature are taken to be
homogeneous. Plastic strain rate ?P is assumed to jump at the inter-
face in order to give the required jump in the flow stress. The
overall strain rate is maintained constant.

The difference method is the same as described in section V.1,
except for the treatment of the geometric discontinuity at y = Yo-
Discretization at nodes j+ and j- (see Fig. (V.3)) is performed

by replacing the spatial derivative 09/dy by forward and backward

~x
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f. differences analogous to (V.29) and (V.30). The velocity at level

n + 1 is obtained by proceeding from the boundary y = 0 at which

" v(0,t) = 0 to the nodal point j-1 wusing equation (V.25) and

similarly proceeding from the boundary y = L at which V(%wt) = L

2 2
+
to the nodal point 3j+1. In order to evaluate (v? 1) we use the

jump relations (V.-5b) and (V.45c) and the constitutive equation (V.4)

+ -
P P
A- P8 L,y ’a_v__) = 90 .,y .33—) (V.46)
j oot % s T L

where all quantities are to be evaluated at the level n+1l. The
velocity gradients in (V.46) are approximated by the one-sided ex-

pressions (V.29), (V.30). With the continuity of the velocity field

at y = Yo equation (V.46) becomes an equation for the velocity at
. + . . . . .
the interface vg 1. This equation is solved by either taking ej
P _P . .
and Y.+,Y__ to be the values at the level n or by an iterative
J J

. . P P
procedure in which the values of ej,y_+,yl_ are updated as they are
] J

obtained from (V.26) and (V.27), with centered differences replaced by

one-sided differences. ]
The temperature is evaluated by means of equation (V.27) for all

nodal points except the nodes j+,j- at the interface. The temperature

at these nodes is obtained from (V.45b) and (V.45d), using one-sided

difference operators. Finally, the flow stress is obtained from

equation (V.28).

V.5. Numerical results

The numerical solution to the fully nonlinear system (V.1-V.4) is

presented for a number of constitutive equations modelling the response
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of visco-plastic materials. Initial imperfections of the homogeneous
solution are taken as a periodic temperature perturbation or as a
permanent geometric defect (cf. V.4). Numerical results are presented
for both velocity as well as traction boundary conditions. The dy-
namic problem is considered for all models discussed. An essential
objective is to compare numerical results with linear analysis
predictions (Chapter IV) in order to determine the usefulness

of these predictions.

A. Velocity boundary conditions

We present herein numerical results for the case where velocities

are prescribed at the boundaries as given by conditions (V.7).

A.l1 1Initial temperature perturbation

The initial imperfection is taken here as a periodic fluctuation
in the specimen temperature. This imperfection is considered to be
weaker than the geometric defect described in (V.4). This is due to
the transient nature of such defectsin contrast to the permanent effect

of the existence of a groove.

A.l.a Power law

Consider the constitutive equation

t = ()Y (PPN (v.47)
where
v = thermal softening (hardening) exponent
m = strain hardening exponent
n = strain-rate exponent

A series of numerical solutions has been obtained for n=1 and for different

values of v and m in order to study the relative effects of thermal

softening and strain-hardening. Most visco-plastic materials exhibit




ARt i 2t W SSRGS

I

P
-?:Q
- 50 -

t\ ]
cod
54
J'_:a
."_ﬁ.'
'. “' .« K3
i. strain-hardening and thermal softening. Under such circumstances,

.l
ﬁ? it is believed that at high strain rates deformation instability occurs
"\"
AN,
-Qy as soon as the net hardening rate %%} vanishes, where 'A' refers to

A
an adiabatic deformation.

From the numerical solutions it appears that the vanishing of the
adiabatic hardening rate is not sufficient to ensure the onset of
localization. 1Indeed, the numerical solution for n=1 shows remarkably stale
deformation even when the slope of the isothermal stress-strain curve

becomes negative.

Numerical results have been obtained for the following values of

the model parameters corresponding to an aluminum alloy.

Thermal properties

k pO C
- - 3 _1 -
Lol (kg/m°) (Tkg Tec7l)
222 2700 903

The overall strain rates considered are in the range

3 -1 6 -1
s

{1078 © - 10 1.

The initial homogeneous strain is taken as Yo = 0.01, while the

perturbation in the initial temperature distribution is chosen as
. 1
8 (y) = € sin[2n (T - y)] (V.48)

where € = 0.005 or € = 0.05. The dimensional value of the homo-

geneous (unperturbed) initial temperature distribution is 50 = 300°K.

The slab thickness is H=0.0lm. The homogeneous initial value of

the flow stress is taken as ;0 = 108Pa.



g VHE TS TR TR T oW Y N e e e W, T aTe T e T, L
"-1.-“"'j..‘.";‘"-l'h'—““"“?'y-'-.—~-‘.~ P ] . SeT . 1

W"" ] Fop PR S Rl R A RA A RIS Ml LA R R S MU

"-.:.‘ " -..

- 51 -

‘B

<, .‘a."l,‘.l?‘:

e
LA

The dimensionless spatial step size is chosen as 4y = 1/40, while

the temporal step size is monitored throughout the calculation to meet

i

the stability requirement (V.35).

Numerical solutions for the power law (V.47) with m > 0, v < 0, and

vy

n = 1 show a slight departure from the homogeneous solution at small

A

(]
L4

)4 . .
strains Yy < 0.05. Then, the deviation from the homogeneous solution

W |

reaches an upper bound at which the inhomogeneous solution retracts back

Fd

-
¥

towards the homogeneous solution, but at much slower rate, Figure (V.4).

-
D

For the material considered, the rate of temperature rise is slow, with

14

!

b
’a
’

1

P

only a 1 percent temperature rise for a 5 percent plastic strain incre- \
ment. The stabilizing effect of thermal diffusion seems to be almost
negligible in the deformation considered, Figure (V.6). An increase in
the amplitude of the initial inhomogeneity to € = 0.05 causes a pro-
portionate increase in the excursion from the homogeneous solution, but
it does not change the qualitative features of the solution, i.e. an

envelope is attained and the deformation remains stable.

Finite-difference solutions have also been obtained for cases with
-1 <m<0andv <0 for which elementary linear stakility analysis (e.g.[11])
allows the possibility of exponential growth. For cases of thermal
softening and strain softening with n = 1, the flow stress decreases
monotonically as the solution evolves while the numerical solution continues
to become more inhomogeneous as time increases; however, the time scale
on which significant departure from the homogeneous solution occurs is
extremely long --apparently too long for the localization to correspond
to the shear band development observed in experiments. A typical situ-

ation is illustrated in Fiqure (V.5) which corresvonds to v = -0.75,

R R O I N ..}_&r.\“:f‘-.\'.‘\‘. .'.!_‘."'.:..-.. ‘.-..' d
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p, m = -0.95 and n = 1 at a dynamic global strain rate of (10')s ~. Clearly,
_E the profiles at later times are getting closer to each other. This
; appears to be due to a decrease in the plastic working as a result of
b
the rate of decreasing stress values. It appears that the solutions for
E: (m < 0) tend asymptotically to the limiting situation of a localized
g? deformation. However, if we confine ourselves to strain amplitudes that
Y -
v are commonly obtained in the plastic deformation of real materials, we
:: reach the conclusion that the deformation described by the model (V-47)
-
’? is remarkably stable for n = 1.
e
The accuracy of the finite difference code has been examined by
N
:{ calculating a solution for a special case (v =m = 0, n = 1) for which
/. an exact solution is available. Close agreement with the exact solution
was obtained.
:f
'.A
.. A.l.b Arrhenius law
<.
Consider the constitutive equation
\I
o P o W
» T=1(Y) - () en(=) (V.49)
. B W P
2 ¥
discussed in Chapter III.
A%
g: Numerical results have been obtained for the same Aluminum alloy
N as in A. Other constants required in (V.49) are
:b 12 -1
‘ w=10""s
- -23_ .
. Kb = 1,38 x 10 J/°K (V.50)
“N
"l
b W=0.5x 10" %%n3
-
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while the strain hardening function has the form

p
T, (%) = T (0) ¢ 1+ b1 - e %)) (v.51)
where
(0) 8
TB = 10" Pa
b = 0.5
c=4.0.

We also introduce the following additional dimensionless quantities

(cf. [14]) .
. - i Py o TB(Y )
=% ¢ TgYY T
Yo 0
. . (v.52)
wo_ o'

Numerical results obtained for this deformation are shown in

Fig. (v.8). The qualitative nature of the deformation behavior is

similar to model (A.l.a) for m < 0 and v < 0, in the sense that the
solution has a tendency to become more inhomogeneous as time increases,
however, the deviation from the homogeneous solution again occurs
very slowly. The deformation governed by the Arrhenius law remains
contained even when the point of maximum stress is reached, which
appears to be strong evidence for stability. In this sense the numer-
ical results appear to be consistent with the predictions of the
linear stability analysis by Clifton et al. [14].

The numerical result shown in Fig. (V.8) is obtained using the

hardening function given by

S NN RO
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(V.53)
P *
= f R fory >y
1
where the dimensional values of the parameters are
£ = 108 pa , £ = 1.5 x 108 pa
0 1
and (v.54)
*
Yy = 0.15
A.l.c Bodner-Merzer law
Consider the constitutive equation
P
T, (W)
1 6
t = 2 g% (V. 55)
Y3

defined in (IV.5.3). Numerical values for the material constants are
taken to be the same values given by Merzer [13]. Non-uniformity of
the strain-rate along the length of the specimen continues to increase

as the deformation proceeds. For € = 0.05 the deformation becomes

strongly localized. Computed profiles for e = 0.005 are shown in

Figs. (V.9.a-d).
The instability obtained for the model (V.55) can be attributed to
two main reasons:
1) The strong thermal softening that overcomes strain hardening
throughout the deformation process, see Fig. (V.9.c);
2) The extreme sensitivity to temperature which has been dis~
cussed in (IV.5.3).
The instability reported by Merzer [13] for this model - in the
case of a geometric imperfection - has been ascribed to the "“persistency"

of the geometric defect; however in view of the unstable response
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of this model to a "transient" temperature perturbation it is
evident that the details of the constitutive model as well as—the
nature and magnitude of the initial imperfection play important roles

in the localization process.

A.2 Geometric imperfection

We consider numerical results for the problem described in (IV.4)
in which a permanent groove is introduced in a thin-walled tube, Fig.
(V.1). The groove is characterized by

A=1.04 and § = 0.1.

A.2.a Power law
The computed profiles for the model (V.47) are shown in Figs.
(v.10.a-d) and (V.1ll.a-d). /Clearly, for n = 1 the power law - again - gives

strongly stable response in spite of the initial jump in the strain rate,

Fig. (v.10.d). The difference between temperature levels inside and

outside the groove remains less than one percent up to total strains
of 40 percent, Figure (V.10.b).

For the case of m > 0; the stress rises monotonically while
it decreases monotonically for m < 0, Figures (v.1l0.c), (V.ll.c) re-

spectively. The maximum rise of the strain rate from its initial value

~(inside the groove) is less than one percent which is strong evidence

of the stability obtained for the power law given by (V.47), with n = 1.
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o The effect of strain-rate hardening on the response for the power
1
- law given by (V.47) is examined by choosing the parameters v, m and
AR
r
-t n to correspond to two steels, namely 5 cold-rolled steel (CRS-1018)
Y
-~ and a hot-rolled steel (HRS-1020). Experimental investigations [19]
) showed that deformation localizes into shear bands in the CRS whereas
~
"i' the HRS showed a stable response.
v
' Numerical values for the parameters used in this computation are
2: CRS-1018 HRS-1020
‘o
190
}3 v = -0.38 v = -0.51
sy m = +0.015 m = +0.12
N n = +0.019 n = +0.0133
T_ = 436 MPa T = 261 MPa
A o [0]
'
A‘J .
o Thermal Properties:
v
R
o k Po C
-1 - - -
i Wm oc 1 kg/m3 Jkg 1 oc 1
=
N 54 7800 500
§ -
{::- The length of the specimen is taken as 2.5 mm and a dynamic
{:‘ global strain rate of 103 s.1 is considered. The groove characteristics
are
. A =1.02 and § = 0.05
,A.:
The results of this calculation are shown in Figures (V.12.a-f) and
' (v.13.a~f) for the HRS and the CRS respectively. The solutions indicate
[
}{ remarkably distinct behavior for the two steels considered. The
e =
$I
: strong hardening rate exhibited by the HRS seems to stabilize the
- deformation, whereas the deformation of the CRS localizes inside the
)
;-: groove as soon as thermal softening overcomes strain and strain-rate
.:4
N
»
)
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hardening. Furthermore, for the CRS the shape of the profiles in-

z‘ side the groove indicates a strong localization process. These re-
é; sults are - qualitatively - in agreement with experimental observa-
i tions in [19]. The instability observed for the CRS with n << 1 and
hg the stability shown in Figures (V.1ll) for n = 1 are consistent with
:3 the predictions of the linear stability analysis (cf. (IV.32)) which

. allows large growth rates for small values of n.

: A.2.b Arrhenius law

‘L; The response for the case of the Arrhenius law (V.49) with a
ig geometric defect is presented in Figs. (V.1l4.a-d), (V.15.a-d) and

% (V.16.2-d).

t{ The computed profiles show a wave-like solution at early times
.? (YP € 0.25). This feature is attributed to the strength of the

; strain hardening coefficient S3 relative to the viscosity coefficient
‘i Sl at early times. For S1 << 53, the momentum equation (V.14) can
t be written as

'. P

L o, -g—:_'=szg—5+s3%—. (V.56)

N

. Moreover, if heat diffusion is neglected due to its small influence,

S we can set

i %% = rlr¢. (v.57)

ti Using the compatability equation (V.15) to eliminate (v), we find
-Eﬁﬁ = (5—3) ﬁ + (S—z) -3—23 + "L.0.D." (v.58)

3 a2 o 3y2 s ay2

0

.

.
-
.




where "L.O.D." stands for "lower order derivatives". Differentiating
(V.58) w.r.t. time, we get the following wave equation for the plastic
strain rate

2
TS2)] §_$,+ L.0.D. (V.59)

1
= [ (s. +r 3y2

32¢
ot po 3 1

N

Observing that S_ < 0 for the thermal softening features of the

2

Arrhenius law, we can see that at early times when S can be neg-

1

lected with respect to S a wave-like response is obtained when the

3’
strain hardening (83 > 0) dominates the thermal softening (S2 < 0).
This analysis is supported by the numerical results shown in Fig.

(V.16.a-d) where no hardening is considered and the wave-like early

response is totally eliminated.

Consideration of the late time response for the case of the
Arrhenius law, suggests that the existence of a permanent groove in |
the specimen contributes to an instability. This can be seen by
noting the large temperature increase inside the groove relative to
that outside it, as well as the increase of strain rates inside the
groove and their decrease outside the groove. In spite of these
instability features we regard this response as essentially stable
for practical purposes. That is, although the deformation begins
with strain rates inside the groove which are 4.5 times larger than
those outside, the final strain rates at YP = 1.0 are only 6 times
larger than those outside the groove. Therefore the observed in-
stability is very weak even with a substantial initial jump and with
continuation of the deformation to large strains. We prefer to reserve

the term instability for cases analogous to reported experimental
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results on shear bands in which the strains within the bands are much
larger than in neighboring regions. !

The results shown in Figure (V.15.a-d) are obtained for a
shallower groove, A = 1.004, the difference between temperature levels
in and out of the groove is less pronounced. Moreover the difference
between strain rates is less than that obtained for X = 1.04, and
the strain rate inside the groove at YP = 1.0 remains well below the
value at YP = 0.0.

The results obtained for the non-hardening idealization are pre-
sented in Figure (V.16.a-d). Wave-like early response is completely
eliminated upon removal of the strain hardening. At late times the
differences in strain rate are comparable to those obtained when
strain hardening was included. This result is consistent with
regarding the response as stable for the case of the Arrhenius law,

'; since even for such strongly destabilizing conditions as a groove and

no strain-hardening the deformation does not become much more non-

uniform at late times than it is initially. Computational experiments
performed for the Arrhenius law revealed negligible sensitivity of

the results to heat conduction.

A.2.¢c Bodner-Merzer model

Numerical results for the model (V.55) have been reported by
Merzer [13] for a specimen with a groove. Our results for the same
problem are shown in Figs. (v.17.a-d). 1In order to improve the
accuracy of the solution near the groove a finer mesh is used than in

[13] and jumps across the groove boundaries are accounted for ex-

'..'..';,.'f.)-',';t.‘.:.‘.f.:j
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fy
E ) plicitly. A two-level, explicit, Du-Fort and Frankel algorithm is

s used. Details of the numerical method are given in Appendix II.
'ﬁj The qualitative features of the solution are the same as those

. obtained by Merzer [13]; however, the temperature and strain rate
58 amplitudes inside the groove are higher than reported values [13].
’ L
iq: This difference is believed to be a consequence of numerical errors

. caused by the use of a coarse computational mesh in [13].

. The response obtained for this model is quite strongly un-

stable relative to other examples considered herein. One factor con-

- tributing to this instability is the relatively weak strain harden-

s

. ing, for which the material begins softening immediately, see Fig.

< (Iv.l17.c). Another is the fact that the strain rate can increase in-
: definitely without increase in stress as the temperature 6 = 1.72
) is approached (cf. 1Iv.46.b).

) B. Stress boundary conditions

2 Numerical results are presented in this section for the case of
:: simple shear of a uniform slab subjected to the stress boundary con-
4-'_:
o ditions

gl t(0,t) = ©(1,t) = t(0, 0) = (1, 0) (V.60)

; The constitutive equation is taken to be the power law (V.47) with n=1. An
)
- initial temperature perturbation (V.48) is considered, with € = 0.005.
:j Two cases are considered as being representative of the response of
:? materials that can be modelled by (V.47); the first is for v = ~0.75
T and m = +0.1 while the second is for the same v but with m = -0.95.
53¢
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3
r\ The behavior for m > 0 is remarkably stable. The deformation

Eﬁ; tends to become more homogeneous with increasing time, see Fig. (IV.18.a).
;E% This stable response results even when the point of maximum load is
Fi passed, i.e. for yP > 0.025. On the other hand, the response for

:i m < 0 is remarkably unstable. Shear bands form at the two boundaries
“§? where strain rates are 24 times higher than their initial values (see
*‘; Fig. (v.19.d4)). Moreover this intense shearing occurs at relatively
,ja small strains (YP = 0.05), indicating a strong bifurcation process.

:3 As a result of thermal softening and strain softening, the flow

;1 stress decreases monotonically except at vy = 0 and y = 1. Sustaining

A\

::3 high stress levels at the boundaries leads to the softening of the

e

‘%ﬁ material there and to the resulting shear strain localization.

;\' A similar qualitative response is observed for the Arrhenius law
;E given by (V.49) with no hardening. The deformation tends to become

_E& more inhomogeneous as time grows; however, the speed of deformation is
.~. slower than that obtained for the power law, see Figures (V.20.a-d).

F)' Strain rates are only (1.5) times their initial values at 50% of plastic
Eﬁ straining. This slow localization can be explained by the weak thermal
- softening exhibited by the Arrhenius law as well as the absence of the
Eg isothermal strain-softening, see Figure (V.20.c).

E: The response for the Bodner-Merzer constitutive model is - again -
i. qualitatively similar to earlier results: however, the rate of heat

ﬁ generation is much higher as compared to the power law or the Arrhenius

<

.’: law, see Figure (V.21.b). The limit (IV.46.b) imposed on temperature
iy by the constitutive law (V. 55) is reached at the specimen boundaries for
=

total plastic strain of approximately (35) percent.
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The remarkable feature of the solution of the simple shear problem

with traction-controlled boundaries is that the same resnonse is obtained
whether or not the initial solution is perturbed. In other words,

the solution of an unperturbed dynamic problem with stress boundary
conditions becomes immediately inhomogeneous as deformation proceeds.

The evolution of inhomogeneous deformation seems to be a consequence

of the imposed stresses at the boundaries, since holding stresses to

be constant there while allowing stress to decrease in the interior
creates sharp stress gradients in the vicinity of specimen boundaries;

as a result, strain rates become large - forming regions of localized
deformation. This feature of the problem with stress boundary condi-

tions is discussed further in Appendix (III).

V.6 Concluding remarks

For velocity boundary conditions, simple shearing deformations
are remarkably stable for the three constitutive equations considered

except for the Bodner-Merzer model and the power law with n << 1.

The localization observed for the Bodner-Merzer model appears to be

due to a non-physical degeneracy of the model at finite temperatures
that may be reached during adiabatic experiments. The localization ob-
served for the CRS with n << 1 is viewed as indicative of the effects
of thermal softening, weak strain hardening and weak strain rate
sensitivity in obtaining significant strain localization at moderate
strains. Although a persistent geometric defect, such as a groove,
appears to be slightly more destabilizing than an initial perturba-
tion in, for example, temperature, the essential conclusions

regarding the stability of simple shearing deformations do

I.'c
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not appear to be changed substantially by the type of inhomogeneity.
However, the strength of the inhomogeneity plays a significant role.

For stress boundary conditions it appears that simple shearing
deformations are much less stable. For a power law model with iso-
thermal strain softening, localized deformations occur at relatively
small strains.
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I'iqure (V.9.a) - Initial temperature rerturbation, name parameters

as in Merzer's Calculation, €=0.005, profiles are ohtained for
intervals of (yP=n.05),
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Figure (V.9.b) - Temperature profiles for the nroblem

defined in riq. (v.9.a).
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Fiqure (V.9.d) - strain rate protiles for the problem
defined in Fig, (V.9%.a).
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" Figure (V.10.a) -~ Geometric imperfection, 6=0.1, A=1.04, v=-0.75,
L m=+0.25, €=0.0, plotted values are identical in the range 7F=0.0-0.4
‘{ for the shown scale.
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Piqure (V.10.c) - stress profiles for the problem
defined in rig. (v.10.a).
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Figure (V.10.b) - Temperature profiles for the problem
defined in Fig, (Vv.10.a).
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Figure (v.10.d) - strain rate profiles for the problem
defined in Fig. (v.10.a).
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Figure (V.1].a) ~ Geometric imperfection, A=1.04, 6=0.1,
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Y P=0.0"0.4 for the scale shown.
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Figure (V.1ll.c) - stress profiles for the
problem defined in Fig. (V.1ll.a).
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Fiqure (V.11.b) - Temperature profiles for the
problem defined in Fig. (v.1l.a).
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Figure (V.11.d) - strain rate protiles for
the problem defined in Fia. (V.1l.a).
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Figure (V.13.a) - Geometric imperfection, 6=0.05, i=1.02,
va=~0.38, m=0.015, n=0.019, plots are obtained for intervals
of ¥P=0.05
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Figure (V.13.b) - Temperature profiles for the
problem defined in Fig. (v.l3.a).
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Figure (V.15.a) - game as Fiq. (v.1l4.a) excent for A=1,004,
profiles obtained for Y$>0.2 tend to move towards the
initial profile (¥P=0.0).
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Fiqure (V.15.c) - streas profiles for the
problem defined in Fig. (V.15.a),
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Fiqure (Y.ls.b) - Temperature nrofiles for the problem
defined in Fig. (v.15.a), profiles are obtained for
intervals of (yP=0.05).
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(v.14.d) is observed,
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Fiqure (V.16.b) - Temperature profiles for
rigure (V.16.a) - same as Fig. (V.14.a) except that hardening . T 2
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Figure .17.3) - Merzer's Mod=l, § = 0.1, A = 1.04, same pvarameters
as in Merzer's Calculation; profiles are obtained for intervals
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Pigure (V.17.c) - atress nrofiles for Merzer's Moderl,
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Fiqure (V.18.c) - stress profiles for the problem
defined in Fig, (V.18.2) - stress reaches its
maximum at (7P=0, 025).
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Fiqure (V.18.b) = Temperature vrofiles for the
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Fiqure (v.18.d) - strain rate profiles for
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Figure (v.19.a) - Initial temperature perturbation,
€=0.005, v=-0.75,mr-0.95, n=1l; stresses are prescribed
at the boundaries, Plots are obtained for intervals
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Figure (V.19.c]l - stress profiles for the

problem defined in Fig. (V.19.a).
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Figure (V.19.b) - Temperature profiles for
the problem defined in Fig. (V.19.a).
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( APPENDIX (I)
35 Closed Form Solution of a Linear, 15t Order,
A

* 4
.j- Time-Dependent System of Equations

X Consider the system:
I\: L]
e F = W(t)F (1)
g with the initial condition

o

e F(ty) = E (2)
) Claim:
::‘ t
o If W(t) commutes with J W(t)dr,
N to
A then
..Q.:

..,I t
K F(t) = exp [ W(T)dri E(to) (3)
: ’ to

is the unique solution of (1) and (2).

o Proof:
N
Let K(t) Dbe a fundamental matrix of the system (1), i.e.
o K(t) = W(t) K(t) (4)
;3 and det. K(t) # 0. Then the solution of (1) and (2) can be written
as -1 o)
] F(t) = K(t) K (to) F. (5)
;3 Introduce the notation
. -1
" ¢(t,t0) = K(t) K (to) (6)
i- for the fundamental matrix ¢(t,to) which is the solution operator
i
I of the system (1) and (2).
~
B Assume ¢(t't0) = exp{M(t,to)} (7)
) t
R Where M(t,£)) = I w(t)dr (8)
: ‘o
g
I

1 7
.:,
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It is clear that ¢(t,t0) satisfies (1), i.e.
We seek a proof that (7) satisfies (9). Moreover, we are guaranteed

that this solution is unique, (Haar's uniqueness theorem)*.
1
exp{M(t)} = 1 + M + - MM + ...

Then the R.H.S. of equation (9) becomes

R.H.S.=W+WM+-21—|WMM+--- . (10)

While the L.H.S. of (9) becomes

d

L.H.S.
dt

d 1
= — + M+ = R
dt [z 2! MM ]

\
=
+

|
g.
+

2 3 .2
— + — s
X MW 31 MW+

W+ MW + é%—mmw + cecavers o (11)

Comparing expressions (10), (11); we conclude that, if W(t) commutes

with M(t), i.e.

MW = WM

then (10)and (l1)are identical, and consequently ¢(t,to) is .he

unique solution to (9).

* -
In genexal, for A = £(A,t) if £ is "Lipschitz Continuous", there

is one and only one solution A(t) satisfying

A(to) = AO
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g From (5) and (6), we find

t
EF(t) = exp f w(t)dtr ¢ E(t,)

%o

NN
."l‘l‘l.l

which completes the proof.
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APPENDIX II

Numerical Solution of Merzer's Problem

oo YN i

The outlines of the numerical algorithm are discussed in (V.4).

The governing equations used are

2 p
dv_ g 3V 38 oy
Po3e = 51 a2 * S5 Y53 oy (1)
p
S _ v (2)
ot dy
% _ (k3% , 8 . o (3)
— ]
3t pOC ayz DOC ot
- 8+b
‘tl(WP) zno [(-1/2)/(a/6+b) ] (4
T = . {2 R.n(T)
/g -
where
_ o1 T
s. = =
17 0% aftefn)
s, = g—" = ~at-2nl£(n) 1/ (26%0%)
s = 2 ar/1-a)
3 P
Y
where -
T
A= m(;—l- - 1)
1
and
P
P = _ o~ _~, oW
Tl(W ) = 7, (Tl to)e
T, (W)
——_— te(m 1€
V3

.. LI WS % S SIS

e e s . B R A > o I S LY
I alalai v n iVl ”i‘l?i\" '!....' sl R, A YL I RO WA IR SN s.{a'k':s'kf\' ARG A T ) A SO ._"._d
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2D0

£(n) = 2 &n n ; n=-z
- .
h‘. "1/2 a
X C %] i . =
5 (6) = ) ; n(o) g * b
)
E; Evaluation of velocity at the interface:
-
N _The interface velocity, say v is obtained by means of ejuation (V.48),

as described in (V.4) assuming that

-1———-% 1.0
(Y )
From (V.46) we obtain
5 1-£(0) ... . E(0)
Y = (ZDO) (Y ) (5)
where
L_
g = %O, - aat s,

We approximate the strain rates by second order one-sided derivatives as

follows:
A ( ) +
Y v [ +1-v+2)l (6)
2" = - (7N
Y (2h)v + [ (~dv_,+v_)))

substitution of (6) and (7) in (5) gives a nonlinear equation for v
which is solved by Newton's method. The initial velocity distribution
is obtained in a similar manner where the jump in the flow stress is
satisfied through an equivalent jump in the strain rate assuming con-

tinuous strain and temperature distributions.
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Finite-difference formulation

} Computational experiments for the considered system of equations,
51 with Merzer's values for the parameters, indicate that the formal |
k. |
* explicity scheme is no longer efficient. Therefore, the scheme is %
. |
‘f improved by using the two-level, explicit, stable Du-Fort and Frankel $
! |
‘3 algorithms, with careful choice of k, h to maintain consistency. The
]
! additional initial value is evaluated by the formal explicit, one-
:. level method; the formal method with time step k; is used until we
> reach t = nk1 = kz; then the calculation is continued by the Du-Fort
{
and Frankel method with a uniform time step k2 >> kj. The efficiency
0
. of the algorithm is strongly improved by this technique. The accuracy
' is also improved since the Du-Fort method is second order in time
) and space.
q
J The Du-Fort and Frankel approximation to the standard heat equation
". 2
b du _ _d'u
; at - V2 (8)
ox
Y
: is given by
(]
N un+1 _ un-l " _ (un+1 + un-l) + "
2 | > SR 1.2 S | 3 i-1 (9)
2k 2
. h
¥
j Our system has variable coefficients and lower order terms; however,
X
y computation evidence shows the utility of this algorithm. The algorithm
i described in (V.4) is applied for this system of equations with the
4
p exception that we use Merzer's constitutive equation and the differ-
]
. encing procedure illustrated in (9).
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= APPENDIX III
?:: ‘On the lack of Homogeneous Solutions for the Case of
:: Stress Boundary Conditions
- Consider the momentum and compatability equations (II.9) and (II.10)
oy
k2
Y dv. _ otT
oy Poat = oy (1
o
| of | w _ 1 )
Z‘ at 3y G a3t
v
’J Assume there exists a homogeneous solution for the velocity and stress
o
N given by
" viy, t) = V(t)y (3)
Ty, t) = T(t), (4)
Substituting solution (3), (4) in (1), (2) we obtain
-*,
}, . [
’. = =
Po V()Y = 0 > V(t) =0
-
<
‘ i.e. v(t) = v (Constant) (5)
]
L)
X Moreover, Fquation (2) yields
4
P +p )
[ =V - =T t (6
Y o G ( )Ivelocity b.c. )
:j Now, let us distinguish two cases
'C'
>, A. Velocity boundary Conditions:
~l
= In this case, V(0, t) =0, v(l, t) = V° , and Equation (6) is
Cd
op 1 :
g =V -=1 7.A
¥ Y o G ( )Ivelocity b.c. ( )
s
s
'Y
L]
[}
e
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where the last term is the stress rate obtained for the homogeneous

solution corresponding to the velocity boundary conditions.

B. Stress Boundary Conditions:

In this case, ;(t) is prescribed at the boundaries and - in turn -
across the specimen since the solution is homogeneous, hence; Equation (6)
reads

P

1 2
Voev, -3 T(t) | . (7.B)

prescribed

Comparison of Equations (7.A) and (7.B) allows us to conclude that the

only way by which (7.B) is satisfied becomes

(t) |

L Rad

2t -
T )Iprescribed

|

In other words, the unique possible homogeneous solution is the one

velocity b.c.

that corresponds to velocity boundary conditions, otherwise the solution

becomes inhomogeneous as deformation proceeds.
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APPENDIX IV

The Rate of Growth of the Energy

Norm in the Linear Stability Analysis

Consider the system of linearized partial differential equations

defined in (IV.7) by
L{w) = 0

This system can be rewritten as

t
= +
Brg = Bltryy

where

w = Dz
where

1 (o] (o]

"o
/G o)

D= °
0 (o] 1
(o] (0] 0

Then the system of equations (2) becomes

(88

(2)

(3)

(3a)
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2re = Bptryy * CiZry * G @
where

c1 = DB,D and C, = DBD (5)
The matrices 82 and Cl are symmetric; Bz is positive, semi~-definite.

Now consider the rate of change of the energy norm of the solution

H
z.zdy
o

{z,2) = J (6)

From (4) and
P
K(E'E) = <E't'z> + <El§'t>

we obtain
9
32-(5,5) = ((Bzg,Yy + Clg'y + Cog),g) +

+ C (7)

E'y + C0§)>
Integration of the second derivatives by parts gives

>

y (8)

<BZE'YY'E> + <§'Bzg'yy> = -2<B2E'y'§'

plus boundary terms which vanish for boundary conditions of either pre-~
scribed heat flow or prescribed temperature. Since 82 is positive,
semi-definite, the right side of (8) is non-positive. Integration

of the first derivatives in (7) by parts gives

€120 ,02) + <2,C2, > = -(C 20z, ) + (2.Cy20 D ©)

. .
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Ehe plus boundary terms which vanish for prescribed velocities or prescribed
.
0N shear tractions. From the symmetry of cl' the right side of (9) is zero.
.\
e
$=. Use of the results (8) and (9) in (7) gives
2 Czi2)> < 2(Cyz.2) (10)
- at M7 - o~'~
>
~;$ or
)
3 - 2 2
. 20122 < 2l ¢, Il 2li? au
! where || z|| =<{z,z) ana ”Co(t)H2 is the L,-norm of the matrix C,(t).
. < 12
>
Integration of (11) gives
4 . t )
” lze) || < {exp J 2|lcym ] an]tlz @13 (12)
s 0
s. or
~
&
A
a2 lzw]1, < exp[ max IIco(mIIzt] lz]1, . (13)
N ne[0,t]
; Using the equivalence of norms for finite-dimensional spaces, we can, for
b . . . .
S convenience, replace the Lz-norm of C0 with the maximum norm to obtain
<
b
v IIE(t)||2 < exp[é maxIICo(n)llmt] ||g(0)||2 (14)
...' = n
-
o
= The well-posedness of the system (2) is ensured provided that
~
X max ||lc,m |, <o (15)
™ nefo,t]
N, s
o where 0 1is a positive constant.
: The estimate (15) gives the inequalities (IV.24) obtained from the
I~
b analysis in Chapter IV for finite wave numbers £.
y
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